Effects of ¹⁷O and ¹⁸O on ³¹P NMR: Further Investigation and Applications

R. Douglas Sammons,^{1a,c} Perry A. Frev,^{*1b} Karol Bruzik,^{1a} and Ming-Daw Tsai^{*1a}

Contribution from the Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, and the Institute for Enzyme Research, University of Wisconsin at Madison, Madison, Wisconsin 53706. Received January 20, 1983

Abstract: An approximately linear relationship between the magnitude of the ¹⁸O isotope effect in ³¹P chemical shifts (S) and the spin-spin coupling constant between ^{17}O and $^{31}P(J)$ has been observed. Such a correlation is useful in systems where only one of the two parameters can be measured. In addition, we have discussed ³¹P-¹⁷O interactions in ³¹P(¹⁷O) NMR using some model compounds and addressed the relationship $\Delta P \Delta O \simeq (35/3)J^2$, where ΔP and ΔO are line widths of the ³¹P(¹⁷O) NMR signal and the ¹⁷O NMR signal, respectively. By use of such correlations and chirally labeled $[\alpha^{-17}O]$ addenosine 5'-diphosphate (ADP), the interactions of Mg²⁺ and Co³⁺ with ADP have been investigated in detail. The results unambiguously established that binding of Co³⁺ with $[\alpha^{-17}O]$ ADP results in an upfield signal (-82 ppm) in ¹⁷O NMR due to O=P-1⁷O⁻...Co³⁺ and a downfield signal (98 ppm) due to Co^{3+} ... $O-P=^{17}O$ and that binding of Mg²⁺ with $[\alpha^{-17}O]ADP$ results in an averaged signal due to rapid exchange of the two species. Finally, we have shown that ^{17}O can be used as a "label" of oxygen and phosphate in macromolecular systems, which can be detected by ³¹P NMR due to quadrupolar or dipolar broadening.

Three NMR² techniques involving oxygen isotopes have recently been introduced in studies of various physical and biochemical problems involving biochemical phosphates.³ The ¹⁸O isotope effect in ³¹P chemical shifts,⁴ which will be referred to as the ³¹P(¹⁸O) method in this paper, has been widely used to locate a labeled oxygen and to follow the exchange of an oxygen or a phosphoryl group.^{5,6} The ¹⁷O quadrupolar effect in ³¹P NMR,⁷ referred to as the ${}^{31}P({}^{17}O)$ method,⁸ has become an indispensable tool in some stereochemical analyses9 and has been used to quantitate ¹⁷O.^{8,10} Recently, ¹⁷O NMR has been useful for studying diamagnetic metal ion-nucleotide interactions,^{8,11} protonation of adenine nucleotides,^{11,12} and differentiation of diastereotopic oxygens.13

There are limitations in the applications of all three methods. The ³¹P(¹⁸O) method requires a high-resolution spectrometer and is limited to small molecules that give very sharp ³¹P NMR signals. The ¹⁸O "label" cannot be detected by ³¹P NMR in macromolecules or even in small molecules such as phospholipids in solution. The ³¹P(¹⁷O) method is mainly used in stereochemical analysis of small molecules. In ¹⁷O NMR analysis of phosphates, the $^{31}P^{-17}O$ spin-spin coupling constant (designated as J) is obtained only for some relatively small and symmetrical molecules and only at elevated temperatures.^{12,14} Some ¹⁷O NMR signals may be

(7) Tsai, M.-D. Biochemistry 1979, 18, 1468-1472.
(8) Tsai, M.-D.; Huang, S. L.; Kozlowski, J. F.; Chang, C. C. Biochemistry 1980, 19, 3531-3536.

 (9) (a) Tsai, M.-D.; Chang, T. T. J. Am. Chem. Soc. 1980, 102, 5416-5418.
 (b) Webb, M. R.; Trentham, D. R. J. Biol. Chem. 1980, 255, 1775-1779.
 (c) Buchwald, S. L.; Knowles, J. R. J. Am. Chem. Soc. 1980, 102, 6601-6603. (d) Jarvest, R. L.; Lowe, G.; Potter, B. V. L. J. Chem. Soc.,

 (10) Reed, G. H.; Leyh, T. S. Biochemistry 1980, 198, 3472–3480.
 (11) Huang, S.-L.; Tsai, M.-D. Biochemistry 1982, 21, 951–959.
 (12) Gerlt, J. A.; Demou, P. C.; Mehdi, S. J. Am. Chem. Soc. 1982, 104, 2848-2856

(13) Coderre, J. A.; Mehdi, S.; Demou, P. C.; Weber, R.; Traficante, D. D.; Gerlt, J. A. J. Am. Chem. Soc. 1981, 103, 1870-1872.

Table I. Correlation between the ¹⁸O Isotope Shift $(S_{31}P_{-18}O)$ and the ³¹P-¹⁷O Coupling Constant $(J_{31}P_{-17}O)^{a,c}$

compound	condi- tion	S ³¹ P- ¹⁸ O, ppm ^b	$J^{31}P^{-17}O$, Hz	°C
H ₄ P ¹⁷ O ₄ +ClO ₄ -		0.0188 ± 0.0007	83.0 ± 2.4	95
KH ₂ P ¹⁷ O₄	pH 2.1	0.0201 ± 0.0007	87.9 ± 2.4	8 0
2 4	pH 2.6	0.0200 ± 0.0011	88.7 ± 2.4	95
K, HP ¹⁷ O	pH 8.6	0.0218 ± 0.0007	95.0 ± 2.4	95
(CH ₃ O) ₃ P ¹⁷ O	CDCl ₃	0.0392 ± 0.0029	153.8 ± 2.4	30
Ph ₃ P ¹⁷ O	CDCl ₃	0.0399 ± 0.0007	160 ± 2.4	30
(PhO) ₃ P ¹⁷ O	CDCl ₃	0.0391 ± 0.0029	158.7 ± 2.4	30
(PhO), P ¹⁷ OO	pD 5.4	0.0293 ± 0.0007	121 ± 2.4	95
$\left[\alpha^{-17}O_{2}\right]ADP$		0.0286 ± 0.0015	123 ± 2.4	95
$\left[\alpha^{-17}O_{2}\right]AMPS$		0.0331 ± 0.0007	131 ± 2.4	95
$\left[\alpha^{-17}O\right]$ - β -	pD 6.4,	0.0363 ± 0.0045	146 ± 2.4	97
CNEt-ADPαS	R _p pD 6.4, S _p	0.0363 ± 0.0045	148 ± 2.4	97

^a The same sample was used for both ³¹ P NMR (determining $S_{31}P_{-18}O$ and ¹⁷O NMR (determining $J_{31}P_{-17}O$). ^b Measured at 81 or 121 MHz, at ambient temperatures. Gaussian multiplication was applied to obtain a near base-line separation of peaks. Although it is desirable to measure S values at the same tempera-ture as in ¹⁷O NMR experiments, it is hard to obtain a good resolution (to resolve ¹⁸O shifts) at near-boiling temperatures, particularly during a long accumulation. ^c The correlation should be applied to only phosphates and derivatives of phosphates.

too broad to be detected even in small molecules unless a highpower, high-recovery probe can be used.8.11

These limitations prompted us to investigate further the three NMR methods and their applicability. In this paper we present results of recent work on three aspects of these phenomena. Part A deals with a newly unmasked empirical correlation between the magnitudes of ¹⁸O isotope shifts in ³¹P NMR (designated as S) and the magnitudes of the ³¹P-¹⁷O spin-spin coupling constant (designated as J), as well as the interaction between 17 O and 31 P in small molecules. In part B, we have used the above correlations and chirally labeled $[\alpha^{-17}O]ADP$ to perform a detailed investigation of the interaction of Mg^{2+} and Co^{3+} with ADP. Part C further evaluates the use of ¹⁷O as a label of oxygen and phosphate in macromolecular systems.

Results and Discussion

(A) Further Investigation in the NMR Methods. (1) Correlation between J and S. Determination of both J and S for a given phosphate is limited to certain conditions, so it would be useful

^{(1) (}a) The Ohio State University. (b) University of Wisconsin. (c) Present address: Chemistry Department, Pennsylvania State University, University Park, PA 16802.

⁽²⁾ Abbreviations: P_i, inorganic orthophosphate; AMP, adenosine 5'phosphate; ADP, adenosine 5'-diphosphate; ATP, adenosine 5'-triphosphate; AMPS, adenosine 5'-thiophosphate; ADP α S, adenosine 5'-thiophosphate; hosphate); EDTA, ethylenediaminetetraacetate; DE, preacquisition delay; HPLC, high-pressure liquid chromatography; J, ³¹P $^{-17}$ O spin-spin coupling constant; S, ¹⁸O isotope shift in ³¹P NMR; THF, tetrahydrofuran.

⁽³⁾ Tsai, M.-D. Methods Enzymol. 1982, 87, 235-279

⁽⁴⁾ Cohn, M.; Hu, A. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 200-203.

^{(5) (}a) Cohn, M. Annu. Rev. Biophys. Bioeng. 1982, 11, 23-42. Villafranca, J. J.; Raushel, F. M. Annu. Rev. Biophys. Bioeng. 1980, 9, 363-392.

⁽⁶⁾ Gorenstein, D. G.; Rowell, R. J. Am. Chem. Soc. 1980, 102, 6165-6166.

⁽¹⁴⁾ Gerothanassis, I. P.; Sheppard, N. J. Magn. Reson. 1982, 46, 423-439.

Figure 1. Correlation between S_{31p-18_0} and J_{31p-17_0} (from Table I), for the data that were obtained from our laboratory, using identical samples for the measurements of both S and J.

if the value of one could be obtained from the measured value of the other. Since both J and S were expected to be related to the P-O bond order, we have sought a correlation between the two parameters. The large amounts of data on both J and S available in the literature have been measured under various conditions, with variable resolution, and could be accurate to within only $\pm 20\%$. We therefore measured the J and S values given in Table I for a number of compounds, using the same sample to determine J (by ¹⁷O NMR) and S (by ³¹P NMR; the shift is due to the ¹⁸O isotope always associated with ¹⁷O). In cases where peaks overlapped, the J and S values were determined by spectral simulation. When J was plotted vs. S, as shown in Figure 1, an approximately linear relationship, J (Hz) $\approx (3.65 \times 10^3)S$ (ppm) + 14, was obtained, confirming the existence of a relationship between these parameters for biochemical phosphates.

(2) ³¹P-¹⁷O Interaction in Small Molecules. For small biochemical phosphates in solution, the line widths of ¹⁷O NMR signals (ΔO) can be related to the quadrupolar relaxation time T_q by eq 1:¹¹

$$\Delta O \simeq \frac{1}{\pi T_{\rm q}} \simeq \frac{12\pi}{125} \left(1 + \frac{\eta^2}{3} \right) \left(\frac{e^2 q Q}{h} \right)^2 \tau_{\rm r} \qquad (1)$$

where $e^2 q Q/h$ is the quadrupolar coupling constant, η is the asymmetry parameter, and τ_r is the rotational correlation time. When ³¹P is bonded directly to ¹⁷O, the ³¹P nucleus will also be relaxed by virtue of its spin-spin coupling with ¹⁷O. This is termed "scalar relaxation of the second kind" by Abragam.¹⁵ Such a scalar relaxation is dependent upon the magnitudes of the longitudinal relaxation time T_1 of the quadrupolar nucleus (which is approximately equal to T_q under present conditions) and the spin-spin coupling constant J. When the product $T_q J$ is sufficiently small, the scalar relaxation dominates the relaxation of ³¹P and results in the collapse of the multiplet. Suzuki and Kubo¹⁶ have calculated the line shape of a dipolar nucleus coupled to a quadrupolar nucleus with I = 5/2 at various values of $T_q J$. Figure 2 shows the ¹⁷O and ³¹P(¹⁷O) NMR spectra of P¹⁷OCl₃

Figure 2 shows the ^{1/}O and ³¹P(¹⁷O) NMR spectra of P¹⁷OCl₃ (Figure 2A), (CH₃O)₃P¹⁷O (Figure 2B), (PhO)₃P¹⁷O (Figure 2C), and Ph₃P¹⁷O (Figure 2D). These compounds are all symmetrical small molecules with a P=O bond that have relatively long T_q and large J, thus showing fully or partially resolved ¹⁷O and ³¹P(¹⁷O) NMR spectra. It can be seen in Figure 2 that as the ¹⁷O NMR coupling pattern collapses (decreasing T_qJ), the ³¹P NMR coupling pattern also collapses.

For biochemical phosphate molecules T_q is generally shorter, due to a larger molecular size and a smaller degree of symmetry, and J is generally smaller, due to a P-O bond with a smaller π -character, than for the molecules in Figure 2. Therefore, the

Figure 2. Line shapes of ¹⁷O NMR (left, at 27.1 MHz) and ³¹P(¹⁷O) NMR (right, at 81.0 MHz). (A) P¹⁷OCl₃ in tetrahydrofuran, using acetone- d_6 for the external lock, $\delta = 210$ for ¹⁷O and +2.5 for ³¹P; (B) (CH₃O)₃P¹⁷O in CDCl₃, $\delta = 73.6$ for ¹⁷O and 2.6 for ³¹P; (C) (PhO)₃P¹⁷O in CDCl₃, $\delta = 91.2$ for ¹⁷O and -17.9 for ³¹P; (D) (Ph)₃P¹⁷O in CDCl₃, $\delta = 91.2$ for ¹⁷O and -17.9 for ³¹P; (D) (Ph)₃P¹⁷O in CDCl₃, $\delta = 91.2$ for ¹⁷O and -17.9 for ³¹P; (D) (Ph)₃P¹⁷O in CDCl₃, $\delta = 43.3$ for ¹⁷O and 28.8 for ³¹P. ¹⁷O NMR parameters: spectral width 10 kHz; acquisition time 0.4 s; pulse width 70 μ s (90° $\approx 100 \ \mu$ s); ¹H decoupled; 8K data points; DE = 25 \ \muS. ³¹P NMR parameters: spectral width 2000 Hz; acquisition time 2 s; acquisition delay 3 s; 75° pulse; ¹H decoupling. All spectra were run at 31 °C and processed with a 5-Hz line broadening. The strong central peaks in ³¹P spectra are due to non-¹⁷O species.

¹⁷O NMR signals of biophosphates are broader and less well resolved, and the ³¹P(¹⁷O) NMR signals of biochemical phosphates appear as a "broad singlet".⁸ Under this condition ($T_qJ < 1$) the scalar relaxation contributes to the relaxation of the dipolar nucleus according to^{15,17}

$$\frac{1}{T_{\rm 1sc}} = \frac{8\pi^2 J^2 I(I+1)}{3} \frac{T_{\rm q}}{1+(\omega_{\rm p}-\omega_{\rm o})^2 T_{\rm q}^2}$$
(2)

$$\frac{1}{T_{2sc}} = \frac{4\pi^2 J^2 I(I+1)}{3} \left[T_q + \frac{T_q}{1 + (\omega_p - \omega_o)^2 T_q^2} \right]$$
(3)

where I = 5/2, $J = J_{^{31}P^{-17}O}$, $1/T_{1sc}$ and $1/T_{2sc}$ are the contribution of scalar relaxation to the longitudinal and the transverse relaxations, respectively, of ³¹P, T_q is the quadrupolar T_1 relaxation time of ¹⁷O, and ω_p and ω_o are the angular precession frequencies of ³¹P and ¹⁷O, respectively.

For small biochemical phosphate molecules at the extreme narrowing limit ($\omega^2 \tau_c^2 \ll 1$), T_q is in the order of $10^{-2}-10^{-4}$ s. Since $\omega_p - \omega_o \simeq 10^7 - 10^8$ Hz, $(\omega_p - \omega_o)^2 T_q^2 \gg 1$, and eq 4 and 5 can be reduced to

$$\frac{1}{T_{\rm lsc}} \simeq 0 \tag{4}$$

$$\frac{1}{T_{2sc}} \simeq \frac{35}{3} \pi^2 J^2 T_q$$
 (5)

Under this condition, $1/T_2 \simeq 1/T_{2sc}$ for ³¹P, and $T_1 \simeq T_2 \simeq T_q$

 ⁽¹⁵⁾ Abragam, A. "The Principles of Nuclear Magnetism"; Oxford University Press: London and New York, 1961.
 (16) Suruki M. Kuba B. Med Phys. 1964 7 201 200

⁽¹⁶⁾ Suzuki, M.; Kubo, R. Mol. Phys. 1964, 7, 201-209.

^{(17) (}a) James, T. L. "Nuclear Magnetic Resonance in Biochemistry"; Academic Press: New York, 1975; pp 48-49. (b) Lehn, J. M.; Kintzinger, J. P. In "Nitrogen NMR"; Witanowski, M.; Webb, G. A., Eds.; Plenum Press: New York, 1973; pp 80-161.

Figure 3. ¹⁷O NMR spectra (at 27.1 MHz) and ³¹P(¹⁷O) NMR spectra (at 81.0 MHz) of H₃P¹⁷OO₃ (50 atom % ¹⁷O) in D₂O (A), H₂O/glycerol (1/1 volume ratio) (B), and glycerol (C). ¹⁷O NMR parameters: spectral width 10 kHz; acquisition time 0.05 s; pulse width 100 μ s; ¹H decoupled; 1K data points; DE = 12 μ s; line broadening 20 Hz, ³¹P NMR parameters: spectral width 3012 Hz; acquisition time 2.7 s; acquisition delay 1 s; 75° pulse; ¹H decoupling; line broadening 4 Hz. All spectra were obtained at 30 °C.

for ¹⁷O, which justifies the approximations of $\Delta O \simeq 1/(\pi T_q)$ and $\Delta P \simeq 1/(\pi T_{2sc})$. The following approximate relationship can be obtained from eq 5

$$\Delta P \Delta O \simeq (35/3) J^2 \tag{6}$$

where ΔP and ΔO represent the line widths of ³¹P(¹⁷O) and ¹⁷O NMR signals, respectively.

While the quantitative nature of eq 6 remains to be established by detailed experimental measurements, the relationship between ΔP and ΔO is approximately true in many systems. As one example, Figure 3 shows the ¹⁷O NMR and the ³¹P(¹⁷O) NMR signals of H₃P¹⁷OO₃ in D₂O (Figure 3A), H₂O/glycerol (Figure 3B), and glycerol (Figure 3C). In Figure 3A, the ΔO is 160 Hz (after correcting for a 20-Hz line broadening and $J_{^{31}P^{-17}O} = 88$ Hz) while the ΔP is 390 Hz. The product $\Delta P\Delta O \simeq 62400$ Hz², which is ca. 30% smaller than $(35/3)J^2 (\simeq 90350$ Hz²). However, as ΔO increases due to an increased viscosity, which is not expected to change J, the ΔP decreases correspondingly, showing the inversely proportional relationship between ΔP and ΔO . The significance of Figure 3C will be discussed further in part C.

(B) Interactions of Mg^{2+} and Co^{3+} with ADP: Complete Study by Three Techniques and Chiral $[\alpha^{-17}O]ADP$. Recently we have introduced the use of ¹⁷O NMR to study the binding of Mg^{2+} with adenine nucleotides,¹¹ which is based on the observation that binding of Co^{3+} with $[\alpha^{-17}O_2]ADP$ (and other ¹⁷O-labeled nucleotides) resulted in two signals: one slightly shifted downfield (1-9 ppm) and slightly broadened; the other greatly shifted upfield (180-200 ppm) and significantly broadened. In Mg^{2+} complexes only a single signal with a small upfield shift (<6 ppm) has been observed. Although it has been concluded, on an empirical basis, that Mg^{2+} interacts with both the α -phosphate and β -phosphate of ADP, and with all the α -, β -, and γ -phosphates of ATP (with a smaller extent of interaction with the α -phosphate of ATP), several important problems on the methodology remain to be established.

In the following sections we described detailed study of Mg^{2+} and Co^{3+} binding with ADP by use of all three NMR techniques and chirally labeled ADP.

(1) Effects of Metal Ions on S and J in Metal-Nucleotide Complexes. The effect of Co^{3+} binding on the S values of nucleotides has been reported^{18,19} but not the effect of Mg^{2+} binding.

IO Hz

Figure 4. ³¹P NMR spectra (81.0 MHz) showing the effect of metal ion binding on the ¹⁸O isotope shift (at the P_{α} signal) of $[\alpha^{-17}O]ADP$. (A) Free $[\alpha^{-17}O]ADP$, randomly labeled, 25 mM in D_2O , pD 7.8; (B) Mg- $[\alpha^{-17}O]ADP$, randomly labeled, 25 mM in D_2O , pD 7.8; (C) Co-(NH₃)₄-(S_p)- $[\alpha^{-17}O]ADP$, Λ plus Δ isomers, in 50% D_2O , pH 5.5. Spectral parameters for (A) and (B): spectral width 2500 Hz; acquisition time 3.3 s; 75° pulse; 16K data points; resolution 0.305 Hz/point; temperature 30 °C; ¹H decoupled; Gaussian multiplication (LB -0.8, GB 0.04). Spectrum C was obtained as previously described.¹⁸

A possible reason is that the ³¹P NMR signals of Mg²⁺ complexes are slightly broadened at high magnetic fields.²⁰ At a medium magnetic field, we have observed the ¹⁸O isotope effect on the P_{α} signal of free ADP (Figure 4A), MgADP (Figure 4B), and CoADP (Figure 4C) as the α,β -bidentate mixture of Λ and Δ isomers obtained from (S_p)-[α -¹⁸O]ADP. The reported S values for O=P--¹⁸O⁻...Co³⁺ are 0.018 and 0.020 ppm, and those for ¹⁸O=P-O⁻...Co³⁺ are 0.032 and 0.033 ppm,¹⁸ which give an average value of 0.026 ppm. The S values measured from Figure 6 for free [α -¹⁷O]ADP and Mg[α -¹⁷O]ADP are 0.0276 and 0.0259 ppm, respectively. Thus, Mg²⁺ and Co³⁺ binding does not seem to change the S value (as an average) appreciably (<10% decrease, which is within the limit of detection).

The J values of CoADP and MgADP are not readily measurable due to the relatively broad ¹⁷O NMR signals. However, on the basis of the correlation in Figure 1 between S and J, the J values of MgADP (J_b) and CoADP (as an average of O=P-¹⁷O-...Co³⁺ and ¹⁷O=P-O⁻...Co³⁺) should be within 10% of that of free ADP (J_f) .

(2) Unequivocal Assignments of ¹⁷O NMR Signals. As indicated in an earlier paper,¹¹ the unequivocal assignment of the two ¹⁷O NMR signals of Co(NH₃)₄[α -¹⁷O₂]ADP awaited the preparation of stereospecifically labeled compounds. Following the procedure previously developed for the synthesis of chiral [α -¹⁸O]ADP,¹⁸ we have synthesized (R_p)- and (S_p)-[α -¹⁷O]ADP. Interaction of (S_p)-[α -¹⁷O]ADP with [Co(NH₃)₄CO₃]NO₃ gave a mixture of the Λ isomer (I) and the Δ isomer (II) of Co(NH₃)₄-(S_p)-[α -¹⁷O]ADP:²¹

(19) Coderre, J. A.; Gerlt, J. A. J. Am. Chem. Soc. 1980, 102, 6594–6597.
 (20) Cohn, M.; Hu, A. J. Am. Chem. Soc. 1980, 102, 913–916.

⁽¹⁸⁾ Sammons, D.; Frey, P. A. J. Biol. Chem. 1982, 257, 1138-1141.

Figure 5. ³¹P NMR spectra (121 MHz) showing the ¹⁸O isotope shift in the P_{α} signal of Co(NH₃)₄-(S_p)-[α -¹⁷O]ADP. (A) Δ isomer (II), with bridging ¹⁸O isotope; (B) Λ isomer (I), with nonbridging ¹⁸O isotope. Sample conditions: 12 mM, 10% D₂O, pH 5.5. Spectral parameters: spectral width 600 Hz; acquisition time 7 s; 90° pulse; line broadening -0.5 Hz; Gaussian broadening 0.05 Hz; ¹H decoupled; resolution 0.082 Hz/point; temperature 28 °C.

We separated the Λ and Δ isomers of Co(NH₃)₄ADP by high-pressure liquid chromatography (HPLC) as described under Experimental Section and identified them as Λ and Δ isomers based on the ³¹P NMR spectra. Shown in Figure 5 are the P_α signals of the resolved Λ and Δ isomers of Co(NH₃)₄-(S_p)-[α -¹⁷O]ADP, which exhibit ¹⁸O isotope shifted lines due to the ¹⁸O species present in the starting ¹⁷O-enriched water. Both the stereochemical purity of (S_p)-[α -¹⁷O]ADP and the diastereomeric purity of I and II must be >95% on the basis of Figure 5.

Figure 6 shows the ¹⁷O NMR spectra (at 40.65 MHz) of $Co(NH_3)_4[\alpha^{-17}O_2]ADP$ (Figure 6A), in which the α -phosphate of ADP is randomly labeled with ¹⁷O at nonbridging positions. Also shown are the Λ isomer, I, (Figure 6B), in which ¹⁷O is specifically located at the uncoordinated position, and the Δ isomer, II, (Figure 6C), in which 17 O is directly coordinated to Co³⁺. These results unambiguously establish that the upfield signal (-82 ppm) is due to $O = P^{-17}O^{-} \cdots CO^{3+}$, whereas the downfield signal (98 ppm) is due to ${}^{17}O = P - O^{-} - Co^{3+}$. We attribute the presence of ca. 20% downfield signal in Figure 2C to epimerization between the Λ isomer and the Δ isomer during 2 h of data accumulation at 50 °C. We confirmed this by redetermining the ³¹P NMR spectrum subsequent to the ¹⁷O experiments and verifying the presence of ³¹P NMR signals corresponding to the two isomers. No appreciable dissociation to free ADP or monodentate CoADP was detected by ³¹P NMR.

(3) ³¹P(¹⁷O) NMR Studies of Mg²⁺ and Co³⁺ Binding to ADP. In the Mg²⁺ complexes of ¹⁷O-labeled ADP and ATP only one signal at the low field (broadened by 2-4 times) was observed. It was not clear whether this signal was due to the average of ¹⁷O=P-O⁻...Mg²⁺ and O=P-¹⁷O⁻...Mg²⁺, or whether it represented essentially only the signal of ¹⁷O=P-O⁻...Mg²⁺, the upfield signal being too broad to be detected. This question has

Figure 6. ¹⁷O NMR spectra (40.65 MHz) of ¹⁷O-labeled Co(NH₃)₄ADP $(\alpha,\beta$ -bidentate) showing the unequivocal assignments of the downfield peak to P=¹⁷O and the upfield peak to P-¹⁷O⁻...Co³⁺. (A) From $[\alpha$ -¹⁷O₂]ADP, Λ isomer plus Δ isomer; (B) from (S_p) - $[\alpha$ -¹⁷O]ADP, Λ isomer; (C) from (S_p) - $[\alpha$ -¹⁷O]ADP, Δ isomer. Sample conditions: (A) 12 mM, D₂O, pD 4.0; (B and C) 7 mM, 10% D₂O, pH 5.5. Spectral parameters: spectral width 20000 Hz; acquisition time 0.102 s; 4K data points; DE = 12 μ s; line broadening 50 Hz; ¹H decoupled; temperature 50 °C. The small amount of the Δ isomer present in the spectrum of the Λ isomer (and vice versa) is due to epimerization between the two isomers during accumulation.

now been resolved by the ${}^{31}P({}^{17}O)$ NMR method, as described below.

Figure 7 shows the ³¹P NMR spectra of free ADP (Figure 7A) and free [α -¹⁷O]ADP (Figure 7B), the difference spectrum B – A (Figure 7C), the ³¹P NMR spectra of MgADP (Figure 7D) and Mg[α -¹⁷O]ADP (Figure 7E), and the difference spectrum E – D (Figure 7F). By comparing the broad P_{α} signals in parts C and F of Figure 7, it is obvious that the apparent ΔP of MgADP has decreased by ca. 50%. Such a "line sharpening effect" in ³¹P(¹⁷O) NMR is predictable based on eq 6. The line widths of the broad P_{α} signals, measured at the half-height and corrected for the spin-spin coupling constant between P_{α} and P_{β}, are 470 Hz for free ADP (ΔP_f) and 250 Hz for MgADP (ΔP_b). Figure 8 shows the ³¹P NMR spectra of Co(NH₃)₄ADP, the

Figure 8 shows the ³¹P NMR spectra of Co(NH₃)₄ADP, the Λ isomer (Figure 8A), and the corresponding ¹⁷O-labeled compound I (Figure 8B), the difference spectrum B – A (Figure 8C), the ³¹P NMR spectra of Co(NH₃)₄ADP, the Δ isomer (Figure 8D), and the corresponding ¹⁷O-labeled compound II (Figure 8E), and the difference spectrum E – D (Figure 8F). The ΔP of the broad P_{α} signals of I and II, as measured from parts C and F of Figure 8, respectively, and corrected for J, are 290 and 170 Hz, respectively. If the Λ and Δ isomers were in rapid exchange, as in MgADP, the average ΔP_b would be 230 Hz, which is the same as the ΔP_b of MgADP within experimental error. The ratio of $\Delta P_f/\Delta P_b$ is ca. 1.9 for MgADP and 2.0 for CoADP.

 $\Delta P_f / \Delta P_b$ is ca. 1.9 for MgADP and 2.0 for CoADP. Therefore, Mg²⁺ and Co³⁺ have approximately the same effect on both J (as described in section 1) and ΔP upon binding with $[\alpha^{-17}O]ADP$. On the basis of eq 6, they should also have the same effect on ΔO . According to the previous report¹¹ for Co- $(NH_3)_4[\alpha^{-17}O]ADP$, $\Delta O_b / \Delta O_f \simeq 3.0-5.2$ for the upfield signal and $\simeq 1$ for the downfield signal, which give an average value of 2.0-3.1. For Mg[$\alpha^{-17}O_2$]ADP, $\Delta O_b / \Delta O_f \simeq 2.2-2.8$ for the single

^{(21) (}a) Cornelius, R. D.; Hart, P. A.; Cleland, W. W. Inorg. Chem. 1977, 16, 2799-2805. (b) Cornelius, R. D.; Cleland, W. W. Biochemistry 1978, 17, 3279-3286.

Figure 7. "Line sharpening effect" of Mg^{2+} binding in ${}^{31}P({}^{17}O)$ NMR (81.0 MHz). (A) Free ADP; (B) free [α - ${}^{17}O$]ADP; (C) 100% ${}^{17}O$ -labeled ADP obtained by subtracting (A) from (B); (D) MgADP; (E) Mg[α - ${}^{17}O$]ADP; (F) 100% ${}^{17}O$ -labeled MgADP obtained by subtracting D from E. Sample conditions: 50 mM (A, D) and 25 mM (B, E) in D₂O, pD 7.9. NMR parameters: spectral width 5000 Hz; acquisition time 0.82 s; acquisition delay 3 s; line broadening 6 Hz; number of scans 9000 (B, E), 1800 (A), and 600 (D); temperature 30 °C.

observed signal, which is approximately the same as the $\Delta O_b / \Delta O_f$ of CoADP (as the average of two signals). Thus, it seems unlikely to have a broad, undetected signal for Mg[$\alpha^{-17}O_2$]ADP.²²

(C) ¹⁷O as a Label in Macromolecular Systems. Figure 3C shows that the "quadrupolar broadening" diminishes in the ³¹P NMR of H₃P¹⁷OO₃/glycerol, which suggests that the "line broadening effect" of ¹⁷O on ³¹P NMR may not be assumed to be present in all circumstances. It should be noted, however, that the case of H₃P¹⁷OO₃/glycerol is unique in that the τ_r (ca. 10⁻⁹ s) is slow enough to diminish the quadrupolar effect, but fast enough to average out ³¹P-¹⁷O dipolar coupling. In macromolecular systems, the line broadening effect of ¹⁷O on ³¹P NMR may persist due to the dipolar effect rather than the quadrupolar effect. It is beyond the scope of this paper to treat the ³¹P-¹⁷O dipolar interaction quantitatively. However, we present two examples, one in enzyme-substrate complexes ($\tau_r \simeq 10^{-7}$ - 10^{-9} s) and the other in phospholipid bilayers ($\tau_r > 10^{-7}$ s), which show the dipolar broadening of ³¹P NMR by ¹⁷O.

Figure 9 shows the ³¹P NMR spectra of ADP bound to arginine kinase (represented by E, M_r 40 000) (Figure 9A), E·ADP·Mg²⁺ (Figure 9B), free [β -¹⁷O₃, $\alpha\beta$ -¹⁷O]ADP (Figure 9C), E·[β -¹⁷O₃, $\alpha\beta$ -¹⁷O]ADP (Figure 9D), and E·[β -¹⁷O₃, $\alpha\beta$ -¹⁷O]ADP·Mg²⁺ (Figure 9E). The P_{β} signal is broadened by ¹⁷O in free ADP due

Figure 8. ³¹P(¹⁷O) NMR spectra (121 MHz) showing the ³¹P-¹⁷O interaction in Co(NH₃)₄-(S_p)-[α -¹⁷O]ADP. (A) Co(NH₃)₄ADP, Λ isomer, unlabeled; (B) Co(NH₃)₄-(S_p)-[α -¹⁷O]ADP, Λ isomer (compound I), in which ¹⁷O is not coordinated (¹⁷O=P-O⁻···CO³⁺); (C) subtraction of A from B; (D) Co(NH₃)₄ADP, Λ isomer, unlabeled; (E) Co(NH₃)₄, (S_p) -[α -¹⁷O]ADP, Λ isomer, unlabeled; (E) Co(NH₃)₄, (S_p) -[α -¹⁷O]ADP, Λ isomer, unlabeled; (Co(NH₃)₄, (S_p) -[α -¹⁷O]ADP, Λ isomer (compound II), in which ¹⁷O is coordinated (Co³⁺···¹⁷O-P=O); (F) subtraction of D from E. Sample conditions: 7 mM; 10% D₂O; pH 5.5. Spectra B and E were taken before the ¹⁷O NMR experiments and were diastereomerically pure. The small doublet (<5%) at 2.1 ppm is due to contaminating β -monodentate, which had been removed by passing through a column of DEAE-Sephadex A-25 prior to ¹⁷O NMR experiments. Spectral parameters: spectral width 2994 Hz; acquisition time 2.736 s; 90° pulse; ¹H decoupled; 16K data points; line broadening 9 Hz (A, D) and 5 Hz (B, E); temperature 27 °C.

to scalar relaxation and in enzyme complexes due most likely to dipolar coupling.²³ Although the upfield peak has been assigned to the P_{α} of ADP in both E-ADP and E-ADP·Mg²⁺ on the basis of the chemical shifts of free ADP and titration of ADP with the enzyme,²⁴ the "¹⁷O label" provides an alternative, unequivocal assignment.

The dipolar broadening is also present in phospholipid bilayers. Figure 10 shows the ³¹P NMR spectra of dipalmitoylphosphatidylcholine (DPPC) dispersed in H₂O (Figure 10A), the corresponding spectrum of [¹⁷O]DPPC (50 atom % ¹⁷O) (Figure 10B), and the difference spectrum (Figure 10C). The spectrum of DPPC (above transition temperature) is characteristic of lipid bilayers, but that of [¹⁷O]DPPC is broadened.

Our results suggest that ¹⁷O is a useful label of oxygen or phosphate in both small molecules and macromolecular systems, except in some very unique cases (τ_r ca. 10⁻⁹ s) such as H₃P¹⁷OO₃/glycerol. By use of ³¹P(¹⁷O) NMR, the position of ¹⁷O can be located and quantitated. In systems where there is more than one phospho group, the ³¹P chemical shifts can be unequivocally assigned by specific ¹⁷O labeling followed by ³¹P-(¹⁷O) NMR analysis.

Experimental Section

Materials. The following compounds were prepared as previously described or were available from previous work:^{8,11} [¹⁷O₄]P_i, [α -¹⁷O₂]-ADP, [β -¹⁷O₃, $\alpha\beta$ -¹⁷O]ADP, [α -¹⁷O₂]AMPS, and Co(NH₃)₄[α -¹⁷O₂]-ADP. The [α -¹⁷O]ADP (randomly labeled at P_{α}) used in Figures 4 and 7 is indeed a sample of [α -¹⁷O₂]ADP, with lower atom percent enrich-

⁽²²⁾ The conclusion that $Mg[\alpha^{-17}O_2]ADP$ is in the "fast exchange limit" on the time scale of ¹⁷O NMR may not seem reasonable considering the fact that the two signals of $Co[\alpha^{-17}O_2]ADP$ are separated by ca. 200 ppm (8 × 10³ Hz at 40 MHz). However, it can easily be explained by the "epimerization" process mentioned in section 2 of part B. The epimerization is intramolecular and should be much faster than the chemical exchange (MgADP $\rightleftharpoons Mg^{2+} + ADP$). In the case of $Co[\alpha^{-17}O]ADP$, no dissociation to free ADP or the monodentate complex was detectable when ca. 30% of epimerization had occurred.

⁽²³⁾ It is not impossible that the "quadrupolar relaxation" is partially or fully responsible for the observed broadening, if the bound ADP has a large internal rotational freedom and therefore a very small τ_r .

⁽²⁴⁾ Rao, B. D. N.; Cohn, M. J. Biol. Chem. 1977, 252, 3344-3350.

Figure 9. ³¹P NMR spectra (121.5 MHz) of ADP-arginine kinase (AK) complexes in 50 mM Hepes buffer (10% D_2O), pH 8.0. (A) 2.6 mM AK, 2.0 mM ADP, 0.67 mM EDTA, 4260 scans; (B) same as A, 4.65 mM MgCl₂, 1530 scans; (C) free [$\beta^{-17}O_3,\alpha\beta^{-17}O$]ADP, 6.7 mM in D₂O, 458 scans; (D) 2.0 mM AK, 1.4 mM [¹⁷O]ADP, 0.53 mM EDTA, 5000 scans; (E) same as D, 4.74 mM MgCl₂, 8000 scans. Sample volumes: 1.5–2.0 mL. Line broadening 5 Hz; acquisition time 1.36 s; temperature 27 °C; ¹H decoupling.

Scheme I

ments (${}^{16}O/{}^{17}O/{}^{18}O \simeq 0.52/0.29/0.19$). Due to this pattern of enrichment, the major labeled species are the singly labeled ones, as is evident from Figure 4. The H₂¹⁷O (52.4% ${}^{17}O$, 35.1% ${}^{18}O$) was obtained from Monsanto. The puratronic-grade (99.999%) Mg(NO₃)₂ was purchased from Ventron Co. Arginine kinase was purified and assayed as previously described.²⁵ Other biochemicals were obtained from Sigma. Other chemicals used were of reagent grade or highest purity available commercially.

Synthesis of $[^{17}O]DPPC$. Scheme I outlines the synthesis of $[^{17}O]D$ -PPC. To a solution of 5.25 mol of $P^{17}OCl_3$ (52 atom % $^{17}O)$ in dry THF was added ca. 6 mmol of triethylamine, followed with 2.0 g of (S)-(-)-1,2-dipalmitin (1) in THF. After being stirred for 3 h at room

Figure 10. ³¹P NMR spectra (at 81.0 MHz) of unsonicated lipid bilayers. (A) Dipalmitoylphosphatidylcholine (DPPC), unlabeled; (B) [$^{17}O_1$]DPPC, 50 atom % ^{17}O at phosphorus; (C) subtraction of A from B. Sample conditions: 100 mg of DPPC mixed with 1.5 mL of D₂O by vortexing at 50 °C. Spectral parameters: spectral width 25 000 Hz; ¹H decoupling (decoupler power 2.5 W); acquisition time 0.082 s; 40,000 scans; line broadening 100 Hz; 45 °C.

temperature, the solvent and excess P¹⁷OCl₃ and triethylamine were removed under vacuum, and the resulting phosphorodichloridate 2 was dissolved in THF at 0 °C and then added to a mixture of 2-(methylamino)ethanol (0.32 g) and triethylamine (2.2 mL) in THF. The reaction was allowed to proceed for 1 h at room temperature. After filtration and evaporation, 1.6 g of the product 3 was isolated by column chromatography on silica gel. The structure of 3 was characterized by ¹H and ¹³C NMR. ³¹P NMR analysis in CDCl₃ showed two peaks due to $P^{-16}O$ and $P^{-18}O$ (0.039 ppm upfield), which is characteristic of a P=Odouble bond. Calculation on the basis of the known $^{17}O/^{18}O$ ratio and the observed ¹⁸O/¹⁶O ratio indicated that the atom percent ¹⁷O enrichment is 50%. ¹⁷O NMR analysis (60 °C, in CDCl₃) showed $\delta = 67$ and $J_{31}P_{-17O} = 150$ Hz. Hydrolysis of 3 in H₂O gave [¹⁷O]-N-methyldipalmitoylphosphatidylethanolamine (4). Methylation of 4 in CHCl, with CH₃I, using a heterogeneous catalyst (2 M aqueous K_2CO_3 containing benzyltriethylammonium chloride), gave [¹⁷O]DPPC (5), which was characterized by ¹H and ¹³C NMR.

Synthesis of the Λ and Δ isomers of $Co(NH_3)_4$ - (S_p) - $[\alpha$ -¹⁷O]ADP. (R_p)- and (S_p) - $[\alpha$ -¹⁷O]ADP were synthesized according to the procedure used for the synthesis of (R_p) - and (S_p) - $[\alpha$ -¹⁸O]ADP, ¹⁸ except that H₂¹⁷O was introduced in the first step (synthesis of $[\alpha$ -¹⁷O₂]AMPS) and desulfurization was carried out in unlabeled H₂O. The procedure of Cornelius et al.^{21a} was followed to prepare Co(NH₃)₄[α -¹⁷O]ADP from (S_p) - $[\alpha$ -¹⁷O]ADP, which was then purified as previously described.¹⁸ The ¹⁷O enrichment was calculated as 52% on the basis of the ¹⁸O enrichment (measured from ³¹P NMR) and the known ¹⁷O/¹⁸O ratio in the starting H₂¹⁷O.

The Λ and Δ isomers of Co(NH₃)₄ADP had been separated previously on a cycloheptaamylose column,^{21b} but we have separated the two isomers on a Waters μ Bondapak C₁₈ reverse-phase HPLC column using 50 mM acetate at pH 6.3 as the eluting buffer. The Λ and Δ isomers were eluted at 33 and 39 min, respectively. The assignment of peaks was based on the known ³¹P chemical shifts of the two diastereomers.^{21b} The first band gave the more upfield P_{α} resonance (corresponding to the Λ isomer) and the second band gave the more downfield resonance (corresponding to the Δ isomer). Remixing of half of the two isomers in a 2/1 ratio gave the expected pattern of the P_{α} signal.

Synthesis of Model Compounds. $P^{17}OCl_3$ was prepared by hydrolyzing 10.4 g of PCl₅ with 1 mL of $H_2^{17}O$ at -78 °C followed by distillation under vacuum (88% yield). Treatment of $P^{17}OCl_3$ with a severalfold excess of a MeOH/trimethylamine mixture at room temperature gave (CH₃O)₃P¹⁷O. The atom percent ¹⁷O enrichment in (CH₃O)₃P¹⁷O was 52% on the basis of the percent ¹⁸O enrichment (determined by ³¹P NMR) and the known ratio of ¹⁷O/¹⁸O. (PhO)₃P¹⁷O was prepared

^{(25) (}a) Buttlaire, D. H.; Cohn, M. J. Biol. Chem. 1974, 249, 5733-5740.
(b) Blethen, S. L.; Kaplan, N. O. Biochemistry 1967, 6, 1413-1421.

analogously to $(CH_3O)_3P^{17}O$ except that phenol was used instead of methanol. $Ph_3P^{17}O$ (49 atom % ^{17}O) was prepared by oxidizing triphenylphosphine with the mixture $Et_3N/CCl_4/H_2^{17}O$ (5 equiv) in dry dimethoxyethane²⁶ followed by silica gel chromatography. $(PhO)_3P^{17}O$ was a byproduct of the coupling reaction of $[\alpha^{-17}O_2]AMPS$ to cyanoethyl phosphate, the second step in the synthesis of chiral $[\alpha^{-17}O]ADP$. $H_4P^{17}O_4^+ClO_4^-$ was obtained by dissolving $H_3P^{17}O_4$ (1 mmol) in 5 mL of D₂O followed by addition of 631 μ L of 70% HClO₄. The final solution contained 1.4 M HClO₄ and 0.2 M $H_3P^{17}O_4$. **Spectral Methods.** ¹⁷O NMR spectra were obtained from a Bruker

Spectral Methods. ¹⁷O NMR spectra were obtained from a Bruker WM-300 spectrometer and ³¹P NMR spectra from both WP-200 and WM-300 spectrometers. A deuterium lock was used in all cases. The ¹⁷O chemical shifts reported are relative to external H_2 ¹⁷O (at 25 °C), and the ³¹P chemical shifts are referenced to external 1 M H₃PO₄. The positive sign represents a downfield shift in both ¹⁷O and ³¹P NMR. Spectral simulations were performed with a program written by Drs. C. Cottrell and A. G. Marshall.

Most of the NMR work described in this paper dealt with ¹⁷O-labeled compounds that were also enriched with ¹⁸O. There are two different types of ³¹P NMR work: in the so-called ³¹P(¹⁷O) NMR^{7,8} a large spectral width and a large line broadening were used such that the broad signal due to ³¹P-¹⁷O species can be observed; in the determination of ¹⁸O isotope shift,⁴ a small spectral width and a small line broadening (or Gaussian multiplication) were used to obtain high resolution. In the latter case, the broad ³¹P-¹⁷O signal was not detectable.

MgADP was prepared from free ADP and puratronic-grade Mg(N- O_3)₂ as previously described.¹¹ Sample sizes were 1.5 mL in most NMR

(26) Appel, R. Angew. Chem., Int. Ed. Engl. 1975, 14, 801-811.

experiments. The preparation of arginine kinase-ADP complexes for ³¹P NMR studies followed essentially the procedure of Rao and Cohn.²⁴ The estimated error in the measurements of "broad ³¹P(¹⁷O) NMR signals" is $\pm 10\%$.

Acknowledgment. This work was supported by National Institutes of Health Grants GM 29041 (M.-D.T.) and GM 30480 (P.A.F.). The NMR spectrometers used (at The Ohio State University) were supported by National Institutes of Health Grant GM 27431 and National Science Foundation Grant CHE 7910019. We thank Drs. A. G. Marshall and C. Cottrell at The Ohio State University for providing computer programs for curve fitting, Ru-Tai Jiang and Yeun-Jung Shyy (also at The Ohio State University) for assistance in the synthesis of stereoisomers of $Co(NH_3)_4$ - (S_p) - $[\alpha$ -¹⁷O]ADP, and Judy Hart for isolating arginine kinase.

Registry No. Λ-Co(NH₃)₄-(S_p)-[α -¹⁷O]ADP, 86119-73-5; Δ-Co-(NH₃)₄-(S_p)-[α -¹⁷O]ADP, 86119-74-6; Co(NH₃)₄ADP, 63937-09-7; Co(NH₃)₄-[α -¹⁷O_2]ADP, 80539-98-6; Mg[α -¹⁷O]ADP, 86119-85-9; MgADP, 7384-99-8; [¹⁷O]DPPC, 86119-75-7; DPPC, 2644-64-6; [α -¹⁷O]ADP, 81246-59-5; (R_p)-[α -¹⁷O]ADP, 83541-22-4; (S_+)-[α -¹⁷O]ADP, 85550-14-7; [α -¹⁷O_2]ADP, 80547-13-3; [β -¹⁷O]₃, $\alpha\beta$ -¹⁷O]ADP, 80547-17-7; [α -¹⁷O_2]ADP, 80547-08-6; [α -¹⁷O]- β -CNEt-ADPαS, 86119-83-7; H₄P¹⁷O₄+ClO₄-, 86119-77-9; KH₂P¹⁷O₄, 86119-78-0; K₂H-P¹⁷O, 86119-79-1; (CH₃O)₃P¹⁷O, 86179-86-6; Ph₃P¹⁷O, 86119-80-4; (PhO)₃P¹⁷O, 86119-81-5; (PhO)₂P¹⁷OO, 86119-82-6; P¹⁷OCl₃, 66943-75-7; H₃P¹⁷OO₃, 86119-84-8; P, 7723-14-0; ¹⁷O, 13968-48-4; ¹⁸O, 14797-71-8.

Stereochemistry of Lysine 2,3-Aminomutase Isolated from Clostridium subterminale Strain SB4

D. John Aberhart,*[†] Steven J. Gould,*^{‡1} Horng-Jau Lin,[†] T. K. Thiruvengadam,[‡] and Bruce H. Weiller[†]

Contribution from the Worcester Foundation for Experimental Biology, Shrewsbury, Massachusetts 01545, and School of Pharmacy, Section of Medicinal Chemistry and Pharmacognosy, The University of Connecticut, Storrs, Connecticut 06268. Received December 2, 1982

Abstract: The stereochemistry of lysine 2,3-aminomutase in *Clostridium subterminale* strain SB4 has been elucidated. Deuterium NMR has been used to show that the transformation of (2S)- α -lysine to (3S)- β -lysine proceeds with transfer of the 3-pro-R hydrogen of α -lysine to the 2-pro-R position of β -lysine. The 3-pro-S hydrogen of α -lysine is retained at C-3 of β -lysine. Also the C-2 hydrogen of α -lysine is retained at the 2-pro-S position of β -lysine. Thus, the reaction proceeds with inversion of configuration at C-2 and C-3. Experiments with $[2-^{15}N, 3-^{13}C]$ - α -lysine have shown that the amino group transfer takes place completely intramolecularly. However, conversion of α -lysine-3,3-d₂ led to the formation of mainly β -lysine-d₁ indicating substantially or completely intermolecular hydrogen transfer in the reaction.

The transformation of α -L-lysine, **1a**, into β -L-lysine, **2a**, by the

NH ₂ (CH ₂) ₃ Y Z NH ₂ CO ₂ H	NH ₂ (CH ₂)
1 a X=Y=Z=H (2S)	2 a X,Y=H ₂
ь х-ч-р, г-н	b X⁼H,Y=D
c X=Y=H,Z=D	c X=D Y=H
d X=D Y=Z=H	
e X=Z=H,Y=D	

enzyme lysine 2,3-aminomutase constitutes the first step of a major metabolic pathway of lysine in *Clostridia* and other bacteria.² The transformation also takes place in several species of *Nocardia* or

Streptomyces, in which the metabolic product, β -L-lysine, occurs as a constituent of several antibiotics, including myomycin³ and related compounds,⁴ viomycin,⁵ roseothricin,⁶ geomycin,⁷ tuberactinomycin (containing γ -hydroxy- β -lysine),⁸ and the strepto-

(1) Career Development Awardee of the National Cancer Institute (CA00627), 1979–1984. Present address: Department of Chemistry, Oregon State University, Corvallis, OR 97331.

(CA0027), 1979–1984. Present address: Department of Chemistry, Oregon
 State University, Corvallis, OR 97331.
 (2) (a) Stadtman, T. C. Adv. Enzymol. Relat. Areas Mol. Biol. 1970, 38, 413–448.
 (b) Ohsugi, M.; Kahn, J.; Hensley, C.; Chew, S.; Barker, H. A. J. Biol. Chem. 1981, 256, 7642–7651.

(3) French, J. C.; Bartz, Q. R.; Dion, H. W. J. Antibiot. (Japan) 1973, 26, 272-277.

(4) McGahren, W. J.; Hardy, B. A.; Morton, G. O.; Lovell, F. M.; Perkinson, N. A.; Hargreaves, R. T.; Borders, D. B.; Ellestad, G. A. J. Org. Chem. 1981, 46, 792-799.

(5) Haskell, T. H.; Fusari, S. A.; Frohardt, R. P.; Bartz, Q. R. J. Am. Chem. Soc. 1952, 74, 599-602.

(6) Goto, T.; Harada, Y.; Hosoya, S.; Komatsu, N. Bull. Chem. Soc. Jpn. 1957, 30, 304-305, 729-737.

(7) Brockmann, H.; Cölln, R. Chem. Ber. 1959, 92, 114-130.

5461

[†]Worcester Foundation for Experimental Biology. [‡]University of Connecticut.